- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000100001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Ankamah, Alexander (2)
-
Chambers, Derrick (2)
-
Martin, Eileen R (2)
-
Tourei, Ahmad (2)
-
Boltz, M Shawn (1)
-
Czarny, Rafal (1)
-
Dean, Tim (1)
-
Goldswain, Gareth (1)
-
Hole, John (1)
-
Hole, John A (1)
-
McGuiness, James (1)
-
Shragge, Jeffery (1)
-
du_Toit, Jako (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Tourei, Ahmad; Martin, Eileen R; Ankamah, Alexander; Hole, John; Chambers, Derrick (, ARMA, American Rock Mechanics Association)The longwall mining method is designed to optimize coal extraction through controlled roof caving, which inevitably induces seismicity. This research employs a distributed acoustic sensing (DAS) system incorporating a fire-safe fiber-optic cable strategically installed underground within an operational longwall coal mine. Despite lower sensitivity than traditional seismometers, DAS sensing technology benefits from dense sensor spacing and close proximity to the active face, where many microseismic events occur. To automatically detect seismic events within the voluminous DAS data records, we employ convolutional autoencoder deep learning models that can be used for anomaly (potential seismic event) detection in power spectral density (PSD) images of DAS recordings. The kernel density estimation (KDE) technique is used to calculate the probability density function (PDF) for the density scores of the latent space (representation of compressed data). We then use this calculated parameter as a threshold to distinguish between the PSD associated with background noise and with potential seismic events. The DAS monitoring system in conjunction with the developed deep learning model could enhance longwall coal mining safety and efficiency by offering valuable data from its densely deployed multichannel sensors near mining operations.more » « less
An official website of the United States government

Full Text Available